Shipping Delays

UPS and FedEx are experiencing significant weather delays across the U.S. To maintain the high performance and reliability our customers expect, many orders received on or after February 10th may have been delayed for shipping. As inclement weather subsides and we resume shipping, you could expect a 1-3 day delay in transit. We apologize for any inconvenience this may cause.

We believe this site might serve you best:

United States

United States

Language: English

Promega's Cookie Policy

Our website uses functional cookies that do not collect any personal information or track your browsing activity. When you select your country, you agree that we can place these functional cookies on your device.

Sequencing: NGS and Sanger Sequencing

In next generation sequencing workflows, nucleic acid is extracted from a sample and fragmented, arranged into platform-specific library constructs, amplified and sequenced. Regardless of the sample type or the platform used, every step throughout this workflow is critical for successful results. 

Promega products to support NGS workflows include Pronex® NGS Quantitation and Size Selective DNA Purification Systems for library preparation prior to sequencing, as well as nucleic acid extraction and quantification systems. The Spectrum Compact Capillary Electrophoresis System supports Sanger sequencing applications, such as verification of NGS base calls and confirmation of genome edits in transformed cultures.

An Introduction to NGS and Sanger Sequencing

From basic science to translational research, next-generation sequencing (NGS, also known as massively parallel sequencing) has opened up new avenues of inquiry in genomics, oncology and ecology. The availability of NGS technology has made sequencing a routine and viable option for diagnostic, forensic and epidemiological investigations and has enabled advances in many genomic analysis applications.

In Sanger Sequencing (first-generation sequencing) DNA fragments are sequenced by the incorporation of chain terminating nucleotides, which are then separated by electrophoresis and detected by a fluorescent signal. In NGS, millions of DNA fragments are sequenced in parallel and nucleotides are detected as they are added to the DNA strand. After DNA extraction and fragmentation, clusters of each DNA template are amplified by PCR, and attached to a solid surface. They are then interrogated with nucleotides and imaged/measured as the DNA is sequenced. 

There are several NGS technologies available: Illumina sequencers use reversible terminator dye-labeled nucleotides to interrogate the captured DNA. Once each base is read, the terminator and dye are removed by cleavage and washing, creating a normal nucleotide. The strand is once again extensible and the process is repeated to continue sequencing along the strand. Instead of using dye-labeled nucleotides, the Ion Torrent sequencer measures the release of hydrogen ions upon base incorporation, and the 454 system measures luminescence upon nucleotide incorporation. These sequencers can process large numbers of samples in parallel, increasing speed and throughput, and making sequencing of whole genomes in short timeframes both achievable and affordable.

国产欧美日韩亚洲第一页_欧美人与动性行为视频_日韩视频中文在线一区_奇米影视777四色米奇影院 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>